Skip to main content

Human-Centred Natural Language Processing

HC-NLP

(in German: Human-Centred Natural Language Processing )

Module-ID: FIN-INF-120494
Link: LSF
Responsibility: Ernesto William De Luca
Lecturer: Marco Polignano
Classes:
  • Vorlesung Human-Centred Natural Language Processing
  • Übung Human-Centred Natural Language Processing
 
Applicability in curriculum: - M.Sc. INF: Informatik
- M.Sc. INGINF: Informatik
- M.Sc. WIF: Informatik
- M.Sc. DKE: Learning Methods and Models for Data Science
- M.Sc. DKE: Data Processing for Data Science
- M.Sc. DE: Grundlagen Ingenieurwesen
- M.Sc. DE: Human Factors
- M.Sc. VC: Computer Science

Abbreviation

HCNLP

Credit Points

6

Semester

Winter

Term

ab 1.

Duration

1 Semester

Language

english

Level

Master

Intended learning outcomes:
Constructive Alignment-konform zu überarbeiten

Content:
What is Human-Centered Natural Language Processing Traditional Natural Language Processing: Rule-based and Count-based Models Modern Natural Language Processing: Prediction-based Models Language Engineering Dataset Creation Dataset Curation with Human Values in Mind Human-Computer Interaction Human-Centered Evaluation of NLP Systems Human-Centered Design of NLP Systems Human-Centered NLP Applications: Digital Humanities, Legal Artificial Intelligence, Recommender Systems Human-AI Collaboration and Future Directions

Workload:
56 h contact time + 94h independent study + 30h project work

Pre-examination requirements: Type of examination: Teaching method / lecture hours per week (SWS):

Written report (Hausarbeit)

Lecture (3 SWS) Exercise (3 SWS)

Prerequisites according to examination regulations: Recommended prerequisites:

keine

Media: Literature:

Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing. MIT press. - Ziems, C., Yu, J. A., Wang, Y. C., Halevy, A., & Yang, D. (2022). The moral integrity corpus: A benchmark for ethical dialogue systems. arXiv preprint arXiv:2204.03021. - Niven, T., & Kao, H. Y. (2019). Probing neural network comprehension of natural language arguments. arXiv preprint arXiv:1907.07355. - Belz, A., Thomson, C., Reiter, E., Abercrombie, G., Alonso-Moral, J. M., Arvan, M., ... & Yang, D. (2023). Missing information, unresponsive authors, experimental flaws: The impossibility of assessing the reproducibility of previous human evaluations in NLP. arXiv preprint arXiv:2305.01633. - Bansal, G., Wu, T., Zhou, J., Fok, R., Nushi, B., Kamar, E., ... & Weld, D. (2021, May). Does the whole exceed its parts? the effect of ai explanations on complementary team performance. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-16).

Comments: