Skip to main content

Deep Learning for Weather and Climate

(in German: Deep Learning for Weather and Climate - )

Module-ID: FIN-INF-999965
Link: LSF
Responsibility: Prof. Dr. Christian Lessig
Lecturer: Prof. Dr. Christian Lessig
Classes: Blockseminar Deep Learning for Weather and Climate 
Applicability in curriculum: - M.Sc. INF: Informatik
- M.Sc. INGINF: Informatik
- M.Sc. WIF: Informatik
- M.Sc. DKE: Applied Data Science
- M.Sc. DE: Methoden der Informatik
- M.Sc. VC: Visual Computing
- M.Sc. VC: Computer Science

Abbreviation

DLWC

Credit Points

5

Semester

Summer

Term

ab 1.

Duration

1 Semester

Language

english

Level

Master

Intended learning outcomes:
1.       kennen und verstehen spezialisierte Fachinhalte, die das Bachelor-Studium erweitern und vertiefen 4.       können sich neues Wissen eigenständig aneignen und für sich nutzbar machen 8.       können selbstständig wissenschaftlich arbeiten 9.       können Wissen vermitteln, Ergebnisse erklären und Argumente verteidigen

Content:

  • Fundamentals of Earth system modeling for weather and climate
  • Implementation and presentation of simple case studies of how deep learning methods can help to better understand climate change

Workload:
56 contact hours + 124 h self study

Type of examination: Teaching method / lecture hours per week (SWS):

Presentation

Zwei Termine:

  • 4. und 5. April 2025
  • 16. und 17. Mai 2025
Prerequisites according to examination regulations: Recommended prerequisites:

keine

Advanced course in deep learning and Fundamentals in scientific computing

Media: Literature:

  • K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian. Accurate medium-range global weather forecasting with 3d neural networks. Nature, 2023.
  • R. Lam, A. Sanchez-Gonzalez, M. Willson, et al. Graphcast: Learning skillful medium-range global weather forecasting, 2022.
  • O. Watt-Meyer, G. Dresdner, J. McGibbon, et al.. ACE: A fast, skillful learned global atmospheric model for climate prediction, 2023.

Comments:
Th seminar will take place in two blocks. Attendance in both is mandatory. In between the blocks, students are expected to work on projects and there will be individual online meetings. All relevant course work will done on May 17th.