Skip to main content

Scientific Machine Learning for Simulations

(in German: Scientific Machine Learning for Simulations - )

Module-ID: FIN-INF-999958
Link: LSF
Responsibility: Prof. Dr. Christian Lessig
Lecturer: Prof. Dr. Christian Lessig
Classes:
  • Seminar Scientific Machine Learning for Simulations
 
Applicability in curriculum: - M.Sc. INF: Informatik
- M.Sc. INGINF: Informatik
- M.Sc. WIF: Informatik
- M.Sc. DKE: Learning Methods and Models for Data Science
- M.Sc. DE: Methoden der Informatik
- M.Sc. VC: Visual Computing

Abbreviation

SMLfS

Credit Points

5

Semester

Winter

Term

ab 1.

Duration

1 Semester

Language

english

Level

Master

Intended learning outcomes:

  1. kennen und verstehen spezialisierte Fachinhalte, die das Bachelor-Studium erweitern und vertiefen
  2. können sich neues Wissen eigenständig aneignen und für sich nutzbar mache
  3. können selbstständig wissenschaftlich arbeiten
  4. können Wissen vermitteln, Ergebnisse erklären und Argumente verteidigen

Content:
Application of neural networks for the simulation of physical systems (and simulations in general)Mathematical analysis of neural networks, with a focus on simulations

Workload:
5 Credit Points = 150 h (28h Präsenzzeit + 122h selbstständige Arbeit)

Type of examination: Teaching method / lecture hours per week (SWS):

Presentation (potentially also results of implementation)

Seminar (2 SWS)

Prerequisites according to examination regulations: Recommended prerequisites:

none

Recommended: Introductory course on neural networks, Scientific Computing I and II (or similar courses on numerics of ODEs and PDEs

Media: Literature:

Board, slides, computer code

Will be announced at the beginning of the term.

Comments: