Skip to main content

Visualization

(in German: Visualization )

Module-ID: FIN-INF-102812
Link: LSF
Responsibility: Bernhard Preim
Lecturer: Bernhard Preim
Classes:
  • Lecture Visualization
  • Exercise class Visualization
 
Applicability in curriculum: - M.Sc. DKE: Applied Data Science
- M.Sc. DE: Methoden der Informatik
- M.Sc. VC: Visual Computing

Abbreviation

VIS

Credit Points

6

Semester

Winter

Term

ab 1.

Duration

1 Semester

Language

english

Level

Master

Intended learning outcomes:
Students ...

  • understand how physiological perception affects visualization effectiveness
  • know basic visualization techniques
  • can generate appropriate visualizations for business and statistical data
  • obtain a dataset with at least 100 observations and 5 attributes, formulate two analytical questions, and create data visualizations to answer these questions.

Content:

  • Visualization goals and quality criteria
  • Understanding of fundamentals of visual perception
  • Overview of data structures in visualization
  • Basic algorithms (Isolines, color scales, diagram techniques),
  • Direct and indirect visualization of volume data
  • map-based visualization
  • dashboard design
  • Information visualization

Workload:
56h contact time + 124h self study

Pre-examination requirements: Type of examination: Teaching method / lecture hours per week (SWS):

Written exam

  • 2 SWS Lectures
  • 2 SWS Exercise classes
Prerequisites according to examination regulations: Recommended prerequisites:

none

  • Module Computer Graphics I
  • Modules Mathematics I, II and III
Media: Literature:

  • Powerpoint presentation
  • Sketches
  • Videos

  • P. and M. Keller (1994): Visual Cues, IEEE Computer Society PressT. Munzner (2015).
  • Visualization Analysis and Design: Principles, Techniques, and Practice, A K Peters
  • W. Schroeder, K. Martin, B. Lorensen (2001): The Visualization Toolkit: An object-oriented approach to 3d graphics, 3. Aufl. Springer, Heidelberg
  • A. Telea (2014): Data Visualization: Principles and Practice, Second Edition, AK Peters (2. Auflage)
  • M. Ward, D. Keim, G. Grinstein (2015): Interactive Data Visualization: Foundations, Techniques, and Applications, Second Edition

Comments: